239 research outputs found

    Development of qualification test program for microelectronic devices Final report, 1 Nov. 1968 - 3 Jul. 1969

    Get PDF
    Qualification test program for digital monolithic integrated circuit device

    Detailed design of a quiet high flow fan

    Get PDF
    A single stage fan was designed to demonstrate the noise abatement properties of near-sonic inlet flow and long-chord stator vanes for the reduction of both upstream and downstream propagated fan source noise. It is designed to produce a pressure ratio of 1.653:1 with an adiabatic efficiency of 83.9%. The fan has a 508 mm inlet diameter with a hub/tip ratio of 0.426 and a design tip speed of 533.4 m/sec. The design inlet specific flow rate is 219.71 kg/sec sq m and there are 10 tandem stator vanes with a combined aspect ratio of 0.54

    4D STEM: high efficiency phase contrast imaging using a fast pixelated detector

    Get PDF
    Phase contrast imaging is widely used for imaging beam sensitive and weak phase objects in electron microscopy. In this work we demonstrate the achievement of high efficient phase contrast imaging in STEM using the pnCCD, a fast direct electron pixelated detector, which records the diffraction patterns at every probe position with a speed of 1000 to 4000 frames per second, forming a 4D STEM dataset simultaneously with the incoherent Z-contrast imaging. Ptychographic phase reconstruction has been applied and the obtained complex transmission function reveals the phase of the specimen. The results using GaN and Ti, Nd- doped BiFeO3 show that this imaging mode is especially powerful for imaging light elements in the presence of much heavier elements

    GREGOR, a 1.5 m Gregory-type telescope for solar observation

    Get PDF
    GREGOR is a high-resolution solar telescope with an aperture of 1.5 m. It will be equipped with an adaptive optics system and is designed for high-precision measurements of magnetic fields and plasma motions in the solar atmosphere and chromosphere with a resolution of 70 km on the Sun. GREGOR will replace the 30 years old Gregory Coude Telescope at the Observatorio del Teide on Tenerife. We describe the optical design and the focal plane instrumentation. In concert with the other solar telescopes at Teide Observatory it will be useful for studying the dynamics of the solar atmosphere and of the underlying processes. GREGOR will also serve as a test bed for next-generation solar telescopes

    Nitrogen dynamics in land cleared of alien vegetation (Acacia saligna) and impacts on groundwater at Riverlands Nature Reserve (Western Cape, South Africa)

    Get PDF
    Woody invading alien plants, many of which are nitrogen-fixing legumes (Fabaceae family), are currently cleared in South African catchments to reduce water loss and preserve streamflow, and for the restoration of the ecosystem. This study tested the hypothesis that clearing invasive alien vegetation may disturb the vegetation-micro-organism-soil N cycling system by producing a large once-off input of fresh tree litterfall rich in N and by eliminating a large N sink. Three experimental plots were established at the Riverlands Nature Reserve (Western Cape, South Africa): a site invaded by Acacia saligna to be used as control; a site cleared of Acacia saligna; and a site with natural vegetation to be used as background. Nitrogen concentrations in soil and groundwater, volumetric soil water contents, root density and weather conditions were measured during 2007. Oxidised forms of nitrogen, in particular NO3-, were dominant in the system. Recharge and leachate were simulated with the HYDRUS-2D model and used as inputs into Visual MODFLOW to predict the spatial distribution of nitrate plus nitrite (NOx) in groundwater. NOx levels in soil and groundwater were higher in alien-invaded areas compared to fynbos-covered land. A quick release of NOx into groundwater was observed due to high residual N reserves in the rooting zone, decreased  evapotranspiration and increased recharge in the treatment cleared of alien vegetation. In the long run, high NOx concentrations in groundwater underlying cleared land will last only until all the excess nitrogen has been leached from the soil. A decrease in NOx concentration in groundwater can be expected thereafter. Clearing land of alien invasive legumes may therefore have a beneficial effect by reducing groundwater contamination from NOx and reducing water losses in catchments

    A dynamical model for the penumbral fine structure and the Evershed effect in sunspots

    Full text link
    Relying on the assumption that the interchange convection of magnetic flux tubes is the physical cause for the existence of sunspot penumbrae, we propose a model in which the dynamical evolution of a thin magnetic flux tube reproduces the Evershed effect and the penumbral fine structure such as bright and dark filaments and penumbral grains. According to our model, penumbral grains are the manifestation of the footpoints of magnetic flux tubes, along which hot subphotospheric plasma flows upwards with a few km/s. Above the photosphere the hot plasma inside the tube is cooled by radiative losses as it flows horizontally outwards. As long as the flowing plasma is hotter than the surroundings, it constitutes a bright radial filament. The flow confined to a thin elevated channel reaches the temperature equilibrium with the surrounding atmosphere and becomes optically thin near the outer edge of the penumbra. Here, the tube has a height of approximately 100 km above the continuum and the flow velocity reaches up to 14 km/s. Such a flow channel can reproduce the observed signatures of the Evershed effect.Comment: 5 pages, 2 figures, accepted for publication in ApJ letter

    Magnetic fields of opposite polarity in sunspot penumbrae

    Full text link
    Context. A significant part of the penumbral magnetic field returns below the surface in the very deep photosphere. For lines in the visible, a large portion of this return field can only be detected indirectly by studying its imprints on strongly asymmetric and three-lobed Stokes V profiles. Infrared lines probe a narrow layer in the very deep photosphere, providing the possibility of directly measuring the orientation of magnetic fields close to the solar surface. Aims. We study the topology of the penumbral magnetic field in the lower photosphere, focusing on regions where it returns below the surface. Methods. We analyzed 71 spectropolarimetric datasets from Hinode and from the GREGOR infrared spectrograph. We inferred the quality and polarimetric accuracy of the infrared data after applying several reduction steps. Techniques of spectral inversion and forward synthesis were used to test the detection algorithm. We compared the morphology and the fractional penumbral area covered by reversed-polarity and three-lobed Stokes V profiles for sunspots at disk center. We determined the amount of reversed-polarity and three-lobed Stokes V profiles in visible and infrared data of sunspots at various heliocentric angles. From the results, we computed center-to-limb variation curves, which were interpreted in the context of existing penumbral models. Results. Observations in visible and near-infrared spectral lines yield a significant difference in the penumbral area covered by magnetic fields of opposite polarity. In the infrared, the number of reversed-polarity Stokes V profiles is smaller by a factor of two than in the visible. For three-lobed Stokes V profiles the numbers differ by up to an order of magnitude.Comment: 11 pages 10 figures plus appendix (2 pages 3 figures). Accepted as part of the A&A special issue on the GREGOR solar telescop

    Solar constraints on new couplings between electromagnetism and gravity

    Get PDF
    The unification of quantum field theory and general relativity is a fundamental goal of modern physics. In many cases, theoretical efforts to achieve this goal introduce auxiliary gravitational fields, ones in addition to the familiar symmetric second-rank tensor potential of general relativity, and lead to nonmetric theories because of direct couplings between these auxiliary fields and matter. Here, we consider an example of a metric-affine gauge theory of gravity in which torsion couples nonminimally to the electromagnetic field. This coupling causes a phase difference to accumulate between different polarization states of light as they propagate through the metric-affine gravitational field. Solar spectropolarimetric observations are reported and used to set strong constraints on the relevant coupling constant k:k(2)\u3c (2.5 km)(2)
    corecore